Constructing Projective Resolutions of Modules

Let M be an R-module. A projective (resp. free) resolution of M is a complex P_{\bullet} with P_{i} all projective (resp. free) modules and $P_{i}=0$ for $i<0$, together with a map $\varepsilon: P_{0} \rightarrow M$ so that the augmented complex

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \xrightarrow{\varepsilon} M \rightarrow 0
$$

is exact. It is known (Lemma 2.2.5) that every R-module has a projective resolution; more generally, an abelian category with enough projectives always has projective resolutions.

Exercise 1 Let k be a field. Consider the ring of polynomials $R=k[x, y, z]$. Compute a projective resolution for $M=k[x, y, z] /(x, y)$.

We build a free resolution, hence projective. See that $k[x, y, z]$ surjects onto $k[x, y, z] /(x, y)$ via $f \stackrel{\varepsilon}{\mapsto}[f]$. It has kernel (x, y).

There exists a surjection $k[x, y, z]^{2} \rightarrow(x, y)$, namely $(f, g) \mapsto f x+g y$. As a result, we get a map $d_{1}: k[x, y, z]^{2} \rightarrow k[x, y, z]$ by composition, and note that since $k[x, y, z]^{2} \rightarrow(x, y)$ is surjective, $\operatorname{im}\left(d_{1}\right)=\operatorname{im}((x, y) \rightarrow k[x, y, z])$. We may write d_{1} as the matrix $\left[\begin{array}{ll}x & y\end{array}\right]$; then

$$
d_{1}\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right]=f x+g y
$$

The kernel of $\left[\begin{array}{ll}x & y\end{array}\right]$ is generated by $\left[\begin{array}{c}-y \\ x\end{array}\right]$. By rank-nullity, since $k[x, y, z]^{2}$ is rank 2 and the image of d_{1} is rank 1 , we have

$$
0 \longrightarrow k[x, y, z] \xrightarrow{\left[\begin{array}{c}
-y \\
x
\end{array}\right]} k[x, y, z]^{2} \xrightarrow{\left[\begin{array}{cc}
x & y
\end{array}\right]} k[x, y, z] \xrightarrow{\varepsilon} k[x, y, z] /(x, y) \longrightarrow 0 .
$$

One can use the program Macaulay2 at http://habanero.math.cornell.edu:3690/ to compute free resolutions of modules over polynomial rings. To demonstrate how to use it, we compute the previous exercise in Macaulay2. The commands are as follows.

```
i1 : R=QQ[x,y,z]
i2 : I=ideal(x,y)
i3 : M=module R/I
i4 : rs=res M
i5 : rs.dd
```

Exercise 2 Compute a projective resolution for $M=k[x, y, z] /(x y, x z)$.
As always, we have

And as there are two generators of the ideal, we have the map $d_{1}: k[x, y, z]^{2} \rightarrow k[x, y, z]$ given by $d_{1}=\left[\begin{array}{ll}x y & x z\end{array}\right]$. The kernel of d_{1} is generated by $\left[\begin{array}{c}-z \\ y\end{array}\right]$, since

$$
\left[\begin{array}{ll}
x y & x z
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right]=x y f+x z g=x(y f+z g)
$$

and this is zero precisely when described. Thus the free resolution is

$$
0 \longrightarrow k[x, y, z] \xrightarrow{\left[\begin{array}{c}
-z \\
y
\end{array}\right]} k[x, y, z]^{2} \xrightarrow{\left[\begin{array}{cc}
x y & x z
\end{array}\right]} k[x, y, z] \xrightarrow{\varepsilon} k[x, y, z] /(x y, x z) \longrightarrow 0 .
$$

Checking our work against Macaulay2 (note to write $\mathrm{I}=\mathrm{ideal}(\mathrm{x} * \mathrm{y}, \mathrm{x} * \mathrm{z})$!) confirms our work is correct.

Exercise 3 Compute a projective resolution for $M=k[x, y, z] /\left(x y, x z, x^{3}\right)$.
We have

$$
k[x, y, z]^{3} \xrightarrow{\left[x y x z x^{3}\right]} k[x, y, z] \longrightarrow 0 .
$$

We need to explore the kernel of $\left[x y x z x^{3}\right]$. Observe that

$$
\left[\begin{array}{lll}
x y & x z & x^{3}
\end{array}\right]\left[\begin{array}{l}
f \\
g \\
h
\end{array}\right]=x y f+x z g+x^{3} h=x\left(y f+z g+x^{2} h\right) .
$$

See that the elements $\left[\begin{array}{c}-z \\ y \\ 0\end{array}\right],\left[\begin{array}{c}-x^{2} \\ 0 \\ y\end{array}\right]$, and $\left[\begin{array}{c}0 \\ -x^{2} \\ z\end{array}\right]$ are elements of the kernel. Thus, we have

$$
k[x, y, z]^{3} \xrightarrow{\left[\begin{array}{ccc}
-z & -x^{2} & 0 \\
y & 0 & -x^{2} \\
0 & y & z
\end{array}\right]} k[x, y, z]^{3} \xrightarrow{\left[x y x z x^{3}\right]} k[x, y, z] \xrightarrow{\varepsilon} k[x, y, z] /\left(x y, x z, x^{3}\right) \longrightarrow 0 .
$$

In considering the kernel of $\left[\begin{array}{ccc}-z & -x^{2} & 0 \\ y & 0 & -x^{2} \\ 0 & y & z\end{array}\right]$, we can see that

$$
\left[\begin{array}{ccc}
-z & -x^{2} & 0 \\
y & 0 & -x^{2} \\
0 & y & z
\end{array}\right]\left[\begin{array}{l}
f \\
g \\
h
\end{array}\right]=\left[\begin{array}{c}
-z f-x^{2} g \\
y f-x^{2} h \\
y g+z h
\end{array}\right] .
$$

It is sufficient that $f=x^{2}, g=-z$, and $h=y$, for then $\left[\begin{array}{c}-z f-x^{2} g \\ y f-x^{2} h \\ y g+z h\end{array}\right]=\left[\begin{array}{c}-z x^{2}-x^{2}(-z) \\ y x^{2}-x^{2} y \\ y(-z)+z y\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Therefore, our final answer is

$$
\begin{aligned}
& 0 \\
& k[x, y, z] \\
& {\left[\begin{array}{c}
x^{2} \\
-z \\
y
\end{array}\right]} \\
& k[x, y, z]^{3} \\
& \left\lfloor\begin{array}{ccc}
-z & -x^{2} & 0 \\
y & 0 & -x^{2} \\
0 & y & z
\end{array}\right] \\
& k[x, y, z]^{3} \\
& \downarrow\left[\begin{array}{lll}
x y & x z & \left.x^{3}\right]
\end{array}\right. \\
& k[x, y, z] \\
& \downarrow \varepsilon \\
& k[x, y, z] /\left(x y, x z, x^{3}\right) \\
& \downarrow
\end{aligned}
$$

Exercise 4 Consider the ring $S=k[x, y, z, u, v, w]$. Compute a projective resolution for $M=$ $k[x, y, z, u, v, w] /\left(\left|\begin{array}{ll}x & y \\ u & y\end{array}\right|,\left|\begin{array}{ll}y & z \\ v & w\end{array}\right|,\left|\begin{array}{ll}x & z \\ u & w\end{array}\right|\right)$.

Write $\Delta_{1}=\left|\begin{array}{ll}x & y \\ u & v\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}y & z \\ v & w\end{array}\right|$, and $\Delta_{3}=\left|\begin{array}{ll}x & z \\ u & w\end{array}\right|$. The first steps proceed as normal.

$$
\left.S^{3} \xrightarrow{\left[\Delta_{1}\right.} \begin{array}{lll}
\Delta_{2} & \Delta_{3}
\end{array}\right] \longrightarrow(S \xrightarrow{\varepsilon} M \longrightarrow 0 .
$$

Now, as before, see that

$$
\left[\begin{array}{lll}
\Delta_{1} & \Delta_{2} & \Delta_{3}
\end{array}\right]\left[\begin{array}{l}
f \\
g \\
h
\end{array}\right]=\Delta_{1} f+\Delta_{2} g+\Delta_{3} h
$$

and that the elements $\left[\begin{array}{c}-\Delta_{2} \\ \Delta_{1} \\ 0\end{array}\right],\left[\begin{array}{c}-\Delta_{3} \\ 0 \\ \Delta_{1}\end{array}\right]$, and $\left[\begin{array}{c}0 \\ -\Delta_{3} \\ \Delta_{2}\end{array}\right]$ must be in the kernel. However, by comparing ranks, we see that the next free module must be of rank strictly less than 3 , so there must be a way to express the kernel in fewer relations. Indeed, observe that the matrices

$$
\left[\begin{array}{lll}
x & y & z \\
x & z \\
u & z & w
\end{array}\right] \text { and }\left[\begin{array}{lll}
u & v & w \\
x & y & z \\
u & v & w
\end{array}\right]
$$

must be singular, so computing their determinants by expanding along the top rows, we have $x \Delta_{2}-y \Delta_{3}+z \Delta_{1}=0$ and $u \Delta_{2}-v \Delta_{3}+w \Delta_{1}=0$. These now describe our kernel, and we have

$$
\left.0 \longrightarrow S^{2} \xrightarrow{\left[\begin{array}{cc}
z & w \\
x & u \\
-y & -v
\end{array}\right]} S^{3} \xrightarrow{\left[\Delta_{1}\right.} \begin{array}{ll}
\Delta_{2} & \Delta_{3}
\end{array}\right] \quad S \xrightarrow{\varepsilon} M \longrightarrow
$$

Over a polynomial ring, these free resolutions will always have finite length. It is worthwhile to check that the following will be an infinite free resolution. Let k be a field, let $R=k[x, y]$ and consider the ring $S=R /(x, y)$. The free resolution of the S-module $M=R /(x)$ is

$$
\cdots \xrightarrow{[y]} S \xrightarrow{[x]} S \xrightarrow{[y]} S \xrightarrow{[x]} S \xrightarrow{\varepsilon} M \longrightarrow
$$

